Minimizing Epidemic Viral Total Exposure under the Droplet and Aerosol Models

Abdalaziz Sawwan (Presenter) and Jie Wu. Department of Computer and Information Sciences, Temple University.

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

Introduction

- The problem of minimizing the spread of viral infections in daily life has been studied widely in the recent years.
- Various models have been proposed to imitate the propagation of viruses within a society.
- The direct droplet infection, is the one mainly considered with little attention to the indirect contact infection that happens via aerosol spreading.

Introduction

• The aerosol model implies that after an infected person leaves the room, it is still possible to infect another person even if they do not have contact directly.

Introduction

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

Time-Evolving Networks

Time-Evolving Networks

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

• 1) Instant-Visiting Model

$$p_{ij}(T) = \begin{cases} 0.5p_i^f(T) \times e^{-\frac{t_j - t_i}{\tau_1}} & i \neq j \\ p_i & i = j \end{cases}$$
$$p_i^f(T) = 1 - \prod_{j=1}^{j=i} (1 - p_{ji}(T))$$
$$\min_T \sum_{i=1}^{i=N} p_i^f(T)$$

• 1) Instant-Visiting Model

• 2) Interval-Visiting Model

 $g_{ij}(R) = p_i (1 - e^{-\frac{t_{ij}}{\tau_2}})$ $p_{ij}(T,R) = \begin{cases} p_{ij}(T) + g_{ij}(R) - p_{ij}(T)g_{ij}(R) & i \neq j \\ p_i & i = j \end{cases}$ $p_i^f(T) = 1 - \prod_{i=1}^{j=i} (1 - p_{ji}(T))$

• 2) Interval-Visiting Model

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

- First: Determining the Optimal Order of the People:
- From lowest initial probability to the highest.
- Proof: By contradiction.

i=1

• Second: Determining the Optimal Time Assignment of the People:

$$\boldsymbol{\nabla} \sum_{i=1}^{i=N} p_i^f(T) = \begin{bmatrix} \frac{\partial \sum_{i=1}^{i=N} p_i^f}{\partial t_2} (t_2, t_3, \dots, t_{N-1}) \\ \frac{\partial \sum_{i=1}^{i=N} p_i^f}{\partial t_3} (t_2, t_3, \dots, t_{N-1}) \\ \vdots \\ \frac{\partial \sum_{i=1}^{i=N} p_i^f}{\partial t_{N-1}} (t_2, t_3, \dots, t_{N-1}) \end{bmatrix} = \mathbf{0}$$

Algorithm 1 One-room optimal time assignment

- **Input**: Initial exposure probabilities $\{p_1, p_2, \ldots, p_N\}$ and the availability time of the room $t_N t_1$.
- Output: The optimal time assignment for the visiting people.
- 1: Sort the probabilities in increasing order and set them to $[p_1, p_2, \ldots, p_N].$
- 2: Compute $t_2, t_3, \ldots, t_{N-1}$ from equation (6).
- 3: **Return** the optimal time assignment T.

Algorithm 2 Multiple-rooms optimal time assignment

- **Input**: Initial exposure probabilities $\{p_1, p_2, \ldots, p_N\}$ and the availability times of the rooms.
- **Output**: The optimal time assignment for the visiting people and the order of the rooms.
- 1: Sort the rooms by the decreasing order of their time periods.
- 2: For each one of the rooms do
- 3: Call Algorithm 1 and set the exposure probabilities to $\{p_1^f, p_2^f, \dots, p_N^f\}.$
- 4: Return the optimal time assignments for all of the rooms.

- Introduction
- Time-Evolving Networks
- Proposed Models
- The Optimal Solution of the Problem
- Numerical Calculations and Simulation

• Instant-Visiting Model:

	Optimal visiting time			Uniform visiting time			Clustered visiting time		
	$ au_{1}=1$	τ_{1} = 5	$ au_1 = 9$	$\tau_{1} = 1$	$\tau_{1}=5$	$\tau_{1} = 9$	$\tau_1 = 1$	$\tau_{1=5}$	$\tau_{1} = 9$
Increasing order	0.45	0.51	0.57	0.53	0.59	0.67	0.68	0.70	0.73
Decreasing order	0.65	0.70	0.72	0.69	0.72	0.73	0.71	0.73	0.75
Uniformly random order	0.59	0.62	0.63	0.62	0.64	0.66	0.69	0.71	0.74
Clustered random order	0.62	0.64	0.66	0.74	0.75	0.76	0.76	0.77	0.78

• Interval-Visiting Model:

	Optimal visiting time			Uniform visiting time			Clustered visiting time		
	$\Delta = 1$	$\Delta = 2$	$\Delta = 3$	$\Delta = 1$	$\Delta = 2$	$\Delta = 3$	$\Delta = 1$	$\Delta = 2$	$\Delta = 3$
Increasing order	0.57	0.52	0.58	0.54	0.62	0.68	0.69	0.71	0.73
Decreasing order	0.66	0.70	0.73	0.70	0.73	0.73	0.73	0.74	0.76
Uniformly random order	0.61	0.63	0.64	0.63	0.65	0.67	0.70	0.71	0.75
Clustered random order	0.63	0.65	0.67	0.76	0.77	0.78	0.77	0.77	0.79